The Diophantine Approximation of Certain Continued Fractions
نویسندگان
چکیده
منابع مشابه
Exponents of Diophantine Approximation and Sturmian Continued Fractions
– Let ξ be a real number and let n be a positive integer. We define four exponents of Diophantine approximation, which complement the exponents w n (ξ) and w * n (ξ) defined by Mahler and Koksma. We calculate their six values when n = 2 and ξ is a real number whose continued fraction expansion coincides with some Sturmian sequence of positive integers, up to the initial terms. In particular, we...
متن کاملContinued Fractions, Diophantine Approximations, and Design of Color Transforms
We study a problem of approximate computation of color transforms (with real and possibly irrational factors) using integer arithmetics. We show that precision of such computations can be significantly improved if we allow input or output variables to be scaled by some constant. The problem of finding such a constant turns out to be related to the classic Diophantine approximation problem. We u...
متن کاملContinued fractions with low complexity: Transcendence measures and quadratic approximation
We establish measures of non-quadraticity and transcendence measures for real numbers whose sequence of partial quotients has sublinear block complexity. The main new ingredient is an improvement of Liouville’s inequality giving a lower bound for the distance between two distinct quadratic real numbers. Furthermore, we discuss the gap between Mahler’s exponent w2 and Koksma’s exponent w ∗ 2 .
متن کاملDiophantine approximation and Diophantine equations
The first course is devoted to the basic setup of Diophantine approximation: we start with rational approximation to a single real number. Firstly, positive results tell us that a real number x has “good” rational approximation p/q, where “good” is when one compares |x − p/q| and q. We discuss Dirichlet’s result in 1842 (see [6] Course N◦2 §2.1) and the Markoff–Lagrange spectrum ([6] Course N◦1...
متن کاملMetrical Diophantine Approximation for Continued Fraction like Maps of the Interval
We study the metrical properties of a class of continued fractionlike mappings of the unit interval, each of which is defined as the fractional part of a Möbius transformation taking the endpoints of the interval to zero and infinity.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 1972
ISSN: 0002-9939
DOI: 10.2307/2039026